CALORIMETRIC STUDY OF MOLECULAR INTERACTIONS IN MIXTURES OF SUBSTANCES CONTAINING CARBONYL GROUPS

BRUNO MARONGIU*

Dipartimento di Scienze Chimiche, Universita' di Cagliari, Via Ospedale 72, 09100 Cagliari (Italy)

STELLA DERNINI

Dipartimento di Ingegneria Chimica e Materiali, Universita' di Cagliari, Piazza d'Armi, 09100 Cagliari (Italy)

LUCIANO LEPORI and ENRICO MATTEOLI

Istituto di Chimica Quantistica ed Energetica Molecolare del CNR, Via Risorgimento 35, 56100 Pisa (Italy)

(Received 11 November 1988)

ABSTRACT

A Tian-Calvet type calorimeter has been used to determine molar excess enthalpies, H^{E} , as a function of concentration at atmospheric pressure and 298.15 K for some binary liquid mixtures containing linear ketones with tetrachloromethane or benzene and linear diketones with *n*-heptane or cyclohexane.

The experimental H^{E} results are interpreted in terms of molecular interactions and of the "homoproximity effect".

INTRODUCTION

This work is part of a systematic study of the thermodynamic properties of liquid organic mixtures, the TOM Project [1–8], undertaken with the purpose of developing accurate group contribution models to be used to predict thermodynamic excess functions, molar excess Gibbs energy, $G^{\rm E}$, and molar excess enthalpy, $H^{\rm E}$. In previous studies [4–5], Kehiaian et al. applied the quasi-chemical group contribution theory in the form of the surface interaction version [6] to mixtures of *n*-alkanones + *n*-alkanes.

By investigating other solvents, the number of surface-type and, consequently, the number of interchange parameters are increased. To carry out a

^{*} Author to whom correspondence should be addressed.

systematic study one should replace the *n*-alkane with other homogeneous solvents, i.e., those having only one type of surface. The most typical are, in order of increasing "activity", cyclohexane, benzene and tetrachloro-methane.

The purpose of this work was to provide additional experimental H^E data for binary liquid mixtures of benzene or tetrachloromethane with ketones of general formula $CH_3(CH_2)_{s-1}$ -CO- $(CH_2)_{t-1}CH_3$ (s, t = 1, 2, 3, 4) and of heptane or cyclohexane with diketones of general formula CH_3CO - $(CH_2)_{\mu}$ -COCH₃.

The H^E of six of the present systems involving monoketones were previously determined by Kiyohara et al. [13]. We repeated such measurements in order to apply our treatment to a homogeneous set of results.

In polyfunctional molecules the proximity of two identical or different groups in a given molecule changes considerably the interaction parameters of the compounds. The existence of this "proximity effect" has been found previously in molecules containing the following pair of identical groups: $-O-\ldots -O-$ [9], $-S-\ldots -S-$ [10], $>N-\ldots -N<$ [11] and $Cl-\ldots -Cl$ [12].

EXPERIMENTAL

Materials

The liquids used, Fluka 99.5 mol% pure, were subjected to GLC analysis and no purification was attempted.

Calorimetric measurements

The excess enthalpies, $H^{\rm E}$, were measured with a Tian-Calvet ("CRMT") type calorimeter which was manually tilted. The batch mixing cell and the experimental procedure are described elsewhere [14]. The calorimeter was calibrated using the Joule effect and the calibration was repeated after each experiment. The precision of our $H^{\rm E}$ measurements was generally better than 1%, as can be seen from the standard deviation values reported in Table 1. The reliability of the apparatus and procedure adopted were checked by performing $H^{\rm E}$ measurements on the test system benzene + cyclohexane. Our results differed by less than 2% from literature data [15] over the entire composition range. Also, the agreement with results of Kiyohara et al. [13] on aliphatic ketones + CCl₄ or + benzene is within declared experimental uncertainties.

All measurements were taken at an average temperature of 298.15 ± 0.10 K. The experimental values, H^{E} , reported in Tables 2–4, were fitted to the smoothing equation

$$H^{\rm E} = x_1 x_2 \sum_{i}^{N-1} a_i (x_i - x_2)^i$$
(1)

TABLE 1

Values of the coefficients a_i , eqn. (1), and standard deviations $\sigma(H^E)$, eqn. (2), at 298.15 K, for binary mixtures of ketones + CCl₄ or C₆H₆ and of diketones + C₇H₁₆ or C₆H₁₂

Mixtures		<i>a</i> ₀	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	a4	$\sigma(H^{\rm E})$
2-Propanone	$+CCl_4$	671	- 919	487	- 206		0.65
-	$+C_6H_6$	585	- 141	-0.3	46	41	0.64
2-Butanone	+ CCl ₄	- 317	- 933	392	- 466	409	0.49
	$+ C_{6}H_{6}$	-201	-151	131	-104	104	0.43
2-Pentanone	$+ CCl_4$	- 516	- 821	468	-412	348	0.45
	$+C_6H_6$	- 292	-142	118	-107	134	0.82
3-Pentanone	$+ CCl_4$	-653	- 821	521	-187		1.01
	$+C_{6}H_{6}$	- 521	- 141	188	- 129	46	0.37
2-Hexanone	$+ CCl_4$	- 390	- 1003	629	162		0.76
	$+C_{6}H_{6}$	-683	47	162	-121		0.75
2,3-Butanedione	$+C_{7}H_{16}$	6745	-450	-661	30	1685	0.31
	$+C_{6}H_{12}$	7097	- 1626	1031	- 1849	1418	0.35
2,4-Pentanedione	$+C_{7}H_{16}$	3727	- 1497	702	15	452	0.43
	$+C_{6}H_{12}$	4173	- 967	828	- 971	537	0.72

^a Eqn. (19) not applicable because of the presence of the miscibility gap.

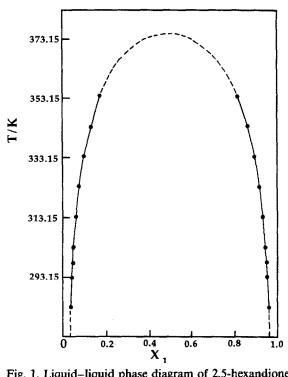


Fig. 1. Liquid-liquid phase diagram of 2,5-hexandione $(1) + C_7 H_{16}$ mixtures.

114

Experimental values of the excess enthalpy, H^{E} , at 298.15 K for binary mixtures of ketones of the general formula $CH_{3}(CH_{2})_{s-1}-CO-(CH_{2})_{t-1}CH_{3}$ (1)+tetrachloromethane, CCl_{4} (2)

<i>x</i> ₁	HE	x ₁	HE	<i>x</i> ₁	HE
	$(J \text{ mol}^{-1})$	•	$(J \text{ mol}^{-1})$		$(J \text{ mol}^{-1})$
CH ₃ COC	H ₁			<u></u>	
0.0531	102	0.2927	238	0.7017	76
0.1016	166	0.4014	209	0.7582	55
0.1384	199	0.5088	165	0.7991	40
0.1982	230	0.6011	120	0.8906	15
CH ₃ CH ₂ C	COCH ₃				
0.0497	69	0.3977	-25	0.7100	-136
0.1102	100	0.5112	-85	0.7898	-128
0.1470	100	0.5984	-117	0.9016	-7 9
0.1900	90	0.6621	-132	0.9433	- 48
0.2705	51				
CH ₃ (CH ₂	$_{2})_{2}COCH_{3}$				
0.0498	44	0.3970	-78	0.7030	- 167
0.0995	60	0.5151	-135	0.7512	-161
0.1503	55	0.6029	- 160	0.7999	- 148
0.1967	40	0.6400	-165	0.8974	- 98
0.2993	-17				
CH ₃ CH ₂ CH	COCH ₂ CH ₃				
0.0477	29	0.4161	-123	0.7103	-190
0.0950	38	0.4906	-158	0.8052	-158
0.1469	33	0.5770	-187	0.8947	-100
0.2238	-1	0.6385	- 195	0.9402	-62
0.3199	-62				
CH ₃ (CH,	$_{2}$) ₃ COCH ₃				
0.0497	19	0.4662	-203	0.8025	-195
0.0982	21	0.5031	-224	0.8977	-110
0.1495	9	0.5906	-254	0.9502	- 56
0.3005	- 85	0.7107	- 245		

where x_1 is the mole fraction of the ketone or diketone and x_2 that of benzene, tetrachloromethane, *n*-heptane or cyclohexane. Values of the standard deviations $\sigma(H^E)$ are given by

$$\sigma(H^{\rm E}) = \left[\sum \left(H_{\rm sm}^{\rm E} - H_{\rm exp}^{\rm E}\right)^2 / (N-n)\right]^{\frac{1}{2}}$$
(2)

where N is the number of experimental points and n is the number of coefficients a_i . The values for the coefficients a_i and the standard deviations $\sigma(H^E)$, determined by least-squares analysis, are reported in Table 1.

TABLE 3

<i>x</i> ₁	H ^E	<i>x</i> ₁	H ^E	<i>x</i> ₁	HE
	$(J \text{ mol}^{-1})$		$(J mol^{-1})$		$(J mol^{-1})$
CH ₃ COC	H ₃				
0.1011	63	0.4483	148	0.7042	111
0.2035	107	0.5024	146	0.8044	81
0.2997	135	0.5519	142	0.9077	43
0.4018	147	0.5950	134		
CH ₃ CH ₂	COCH,				
0.0997	9	0.3935	- 39	0.7021	- 51
0.2013	-5	0.5004	- 50	0.8044	- 40
0.3052	-24	0.5983	- 55	0.8976	-23
CH ₃ (CH ₂	₂) ₂ COCH ₃				
0.0189	3	0.2871	-41	0.7000	-70
0.0493	5	0.3944	-60	0.8025	- 53
0.0900	2	0.5017	- 73	0.8978	- 31
0.1951	-19	0.5896	- 77		
CH ₃ CH ₂	COCH ₂ CH ₃				
0.0273	-2	0.3968	-115	0.7870	- 94
0.0995	-18	0.4910	-130	0.8915	- 54
0.1820	- 47	0.6048	-130	0.9457	-29
0.2951	- 88	0.7059	-115		
CH ₃ (CH	2)3-CO-CH3				
0.1012	-50	0.3995	-165	0.7044	-135
0.1978	-100	0.5000	-170	0.7983	-100
0.3007	-140	0.6021	-160	0.9026	- 53

Experimental values of the excess enthalpy H^{E} at 298.15 K for binary mixtures of ketones of the general formula $CH_{3}(CH_{2})_{s-1}-CO-(CH_{2})_{t-1}CH_{3}$ (1)+benzene, $C_{6}H_{6}$ (2)

Liquid-liquid equilibrium measurements

Mixtures of CH_3 -CO-(CH_2)_n-COCH₃ + n-heptane show partial miscibility for $u \ge 2$ at 298.15 K.

The liquid-liquid equilibrium (LLE) for the mixture of 2,5-hexanedione (u = 2) + n-heptane was investigated in the temperature range 283.15-353.15 K using a glass reactor equipped with a thermostatted jacket and helical stirring. The stirring speed was measured by means of a stroboscope; the contact between the two fluids was started in nitrogen and fine dispersion of the two fluids was reached only at a stirring speed of 1600 r.p.m. After a contact time of about 30 min, the mixtures were allowed to stand so that the two phases could form; after drawing off an aliquot of each, the composition was determined by gas-chromatography. The GC instrument used was a Hewlett-Packard 5700 A equipped with a 2.0-m-long column packed with Durapack. Helium was used as carrier gas and the column temperature was 473.15 K.

TABLE 4

Experimental values of the excess enthalpy H^{E} at 298.15 K for binary mixtures of diketones of the general formula $CH_3CO-(CH_2)_n-COCH_3$ (1)+ C_7H_{16} or C_6H_{12} (2)

$\overline{x_1}$	H ^E	<i>x</i> ₁	H^{E}	<i>x</i> ₁	H^{E}
L	$(J \text{ mol}^{-1})$	•	$(J \text{ mol}^{-1})$	•	$(J mol^{-1})$
CH ₃ CO-0	$COCH_3 + C_7H_{16}$				
0.0991	657	0.3643	1581	0.5714	1633
0.1429	877	0.4287	1665	0.6906	1392
0.2503	1296	0.5193	1679	0.9103	548
0.2983	1436				
CH ₃ CO-0	$COCH_3 + C_6H_{12}$				
0.0571	619	0.3216	1727	0.6571	1497
0.1072	1000	0.3929	1792	0.7786	1091
0.1786	1365	0.4643	1796	0.8571	754
0.2504	1592	0.5571	1708	0.9286	402
CH ₃ CO-0	$CH_2 - COCH_3 + 0$	$C_7 H_{16}$			
0.0714	382	0.3857	973	0.7277	636
0.1561	683	0.5101	924	0.8571	385
0.2950	930	0.6286	792	0.9360	193
CH ₃ CO-0	$CH_2 - COCH_3 + COC$	$C_{6}H_{12}$			
0.0715	432	0.4357	1060	0.6987	815
0.1431	709	0.5020	1042	0.8105	574
0.2273	904	0.6008	961	0.9046	315
0.3214	1021				
CH ₃ CO-((CH ₂) ₂ -COCH ₃	$+C_{7}H_{16}$			
0.0143	252	0.3100	550 ª	0.9531	490
0.0286	429	0.4964	535 ª	0.9588	409
0.0454	576	0.7222	514 ^a	0.9856	187

^a Phase heterogeneity points.

TABLE 5

Data of liquid-liquid equilibria at various temperatures for the 2,5-hexanedione (1) + n-heptane mixture. X_{11} is the molar fraction of diketone in the diketone-rich phase; X_{12} is the molar fraction of diketone in the *n*-heptane-rich phase

T (K)	X ₁₁	<i>X</i> ₁₂	
283.15	0.0395	0.9620	
293.15	0.0438	0.9572	
298.15	0.0466	0.9523	
303.15	0.0509	0.9485	
313.15	0.0610	0.9397	
323.15	0.0804	0.9258	
333.15	0.1016	0.8993	
343.15	0.1321	0.8684	
353.15	0.1730	0.8172	

The liquid-liquid equilibrium data are reported in Table 5 (see also Fig. 1).

DISCUSSION

Mixtures with monoketones

The substitution of a $-CH_{2-}$ group in *n*-alkane with a -CO- group influences the intermolecular forces as a result of two oppositely acting effects, one, weakening, due to smaller dispersion forces exerted by the -CO- groups, compared to the $-CH_{2-}$ groups, and another, strengthening, due to electrostatic interactions between the C=O bond dipoles.

Although a detailed interpretation of all our results, in terms of DIS-QUAC, an extended quasi-chemical group contribution theory [3,16] will be the subject of a future article, a preliminary qualitative discussion of several features of the present work seems justified. First, we note the pronounced

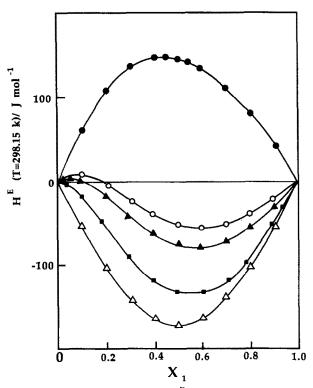


Fig. 2. Molar excess enthalpies H^{E} , at 298.15 K, of ketone (1)+C₆H₆ (2) mixtures vs. x_1 , the mole fraction of ketone. Experimental results: •, 2-propanone, \circ , 2-butanone \blacktriangle , 2-pentanone; \bigtriangleup , 2-hexanone; \blacksquare , 3-pentanone. Curves calculated from eqn. (1) with coefficients from Table 1.

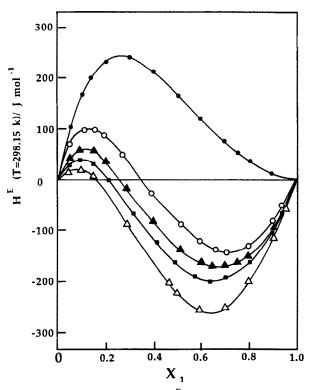


Fig. 3. Molar excess enthalpies H^E , at 298.15 K, of ketone (1) + CCl₄ (2) mixtures vs. x_1 , the mole fraction of ketone. Experimental results: \bullet , 2-propanone; \circ , 2-butanone; \blacktriangle , 2-pentanone; \diamond , 2-hexanone; \blacksquare , 3-pentanone. Curves calculated from eqn. (1) with coefficients from Table 1.

decrease in $H^{\rm E}$ in each case when changing from cyclohexane [7] to benzene or tetrachloromethane as second component. Secondly, when comparing the excess enthalpy, say $H^{\rm E}$ (T = 298.15 K; $x_1 = 0.5$), of an *n*-alkanone (K_n) (n = s + t) + an active solvent (*b*, benzene or tetrachloromethane) with that pertaining to homomorphic alkane (A_n), the increment $\Delta = H^{\rm E}(K_n) - H^{\rm E}(A_n)$ is always a rather larger negative quantity.

The values for mixtures with benzene as second component are Δ (n = 6; $b = C_6 H_6$) = -740 J mol⁻¹ [17].

Thermodynamic excess properties of compounds containing the carbonyl group + benzene mixtures have been qualitatively discussed in terms of specific $n - \pi$ interactions [18]. The increments for mixtures with tetrachloromethane are of similar magnitude, that is to say Δ (n = 6; $b = \text{CCl}_4$) = -535 J mol⁻¹ [19]. Specific interactions of the $n-\sigma$ type have been postulated for mixtures of tetrachloromethane with a polar compound, i.e., ether [20].

As shown in Figs. 2 and 3, the excess enthalpies decrease when the number of alkyl groups (s, t) of the ketone increases; this confirms the

weakening of the dipole-dipole interactions (CO-CO) previously observed when using *n*-alkane or cyclohexane as solvent [3,4], and also confirms the existence of specific intermolecular interactions between the polar group (CO) and the π -electrons of benzene $(n-\pi)$ or between CO and tetrachloromethane $(n-\sigma)$.

The occurrence of oriented interactions between the ketone molecules is also confirmed by the S-shaped curves of H^E vs. x_1 , which is positive at low alkanone concentrations and negative in the ketone-rich regions.

Mixtures with diketones

The introduction of a second carbonyl group in an alkanone molecule increases the H^E values of mixtures with *n*-heptane in comparison with the H^E of the corresponding mixtures involving monoketones. It seemed interesting to estimate the enthalpic effect for mixtures with diketones on the assumption that the two -CO- groups in the bifunctional molecule are independent of each other. To this purpose we have used the quasi-chemical approximation of the lattice theory of solutions [21] following Kehiaian's

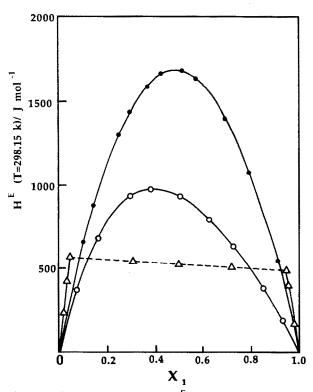


Fig. 4. Molar excess enthalpies $H^{\rm E}$, at 298.15 K, of diketone (1) + C₇H₁₆ (2) mixtures vs. x_1 , the mole fraction of diketone. Experimental results: •, 2,3-butanedione; \odot , 2,4-pentanedione; \triangle , 2,5-hexanedione. Curves calculated from eqn. (1) with coefficients from Table 1.

treatment [6]. The relevant aliphatic/carbonyl group interaction parameters were evaluated from monoketone + alkane [5,13].

The $H^{\rm E}$ ($x_1 = 0.5$) values obtained from these parameters, i.e., implicitly assuming the above hypothetical behaviour, are the following: 1474, 1373, 1240 J mol⁻¹ for 2,3-butanedione, 2,4-pentanedione and 2,5-hexanedione, respectively in mixtures with *n*-heptane. These calculated values are to be compared with the experimental $H^{\rm E}$ ($x_1 = 0.5$)/J mol⁻¹: 1686, 931 and 2850 (extrapolated value).

The difference H^{E} (calc) $-H^{E}$ (exp) for 2,4-pentandione + *n*-heptane is to be attributed, at least partially, to the high degree of enolization of diketone: the enol content is 78% in the pure liquid [22] and 92% in *n*-hexane [23]. For the other diketones, which exhibit low enol content in the pure liquid state [22], the difference H^{E} (calc) $-H^{E}$ (exp) is certainly due to the existence of an important intramolecular interaction between the carbonyl groups or, in other words, to the strong influence of a -CO- group on the solvation of the other.

Similar conclusions can be reached for cyclohexane mixtures. In this case, $H^{\rm E}$ is higher (~100 J mol⁻¹ at the maximum) than the corresponding values for *n*-heptane mixtures. That may be attributed to dispersive aliphatic-cycloaliphatic interactions. In this connection, it is worth remembering that for *n*-heptane + cyclohexane, $H^{\rm E}$ ($x_1 = 0.5$) at 298.15 K is about 240 J mol⁻¹ [24].

ACKNOWLEDGEMENT

This investigation was supported by the Ministero Pubblica Istruzione (Italia).

REFERENCES

- 1 H.V. Kehiaian, Ber. Bunsenges. Phys. Chem., 81 (1977) 908.
- 2 B. Marongiu, S. Dernini and A.M. Polcaro, J. Chem. Eng. Data, 31 (1986) 185.
- 3 B. Marongiu and H.V. Kehiaian, Thermochim. Acta, 122 (1987) 9.
- 4 H.V. Kehiaian, J.-P.E. Grolier, M.-R. Kechavarz and G.C. Benson, Fluid Phase Equilb., 5 (1981) 159.
- 5 H.V. Kehiaian, J.-P.E. Grolier, M.-R. Kechavarz, G.C. Benson, O. Kiyohara and Y.P. Handa, Fluid Phase Equilb., 7 (1981) 95.
- 6 H.V. Kehiaian, J.-P.E. Grolier and G.C. Benson, J. Chim. Phys., 75 (1978) 1031.
- 7 B. Marongiu and H.V. Kehiaian, Atti XX Congresso Dell' Associazione Italiana di Chimica Fisica, Torino, 21-24 Ottobre 1985, p. 290.
- 8 J.-P.E. Grolier and G.C. Benson, Can. J. Chem., 62 (1984) 949.
- 9 R.J. Meyer, J.V. Metzger, K. Kehiaian and H.V. Kehiaian, Thermochim. Acta, 38 (1980) 197.

- 10 Z. Ferhad-Hamida, R. Philippe, J.C. Merlin and H.V. Kehiaian, J. Chim. Phys., 77 (1980) 445.
- 11 I. Ferino, B. Marongiu, V. Solinas, S. Torrazza and H.V. Kehiaian, Fluid Phase Equilb., 11 (1983) 1.
- 12 H.V. Kehiaian and B. Marongiu, Fluid Phase Equilb., 40 (1988) 23.
- 13 O. Kiyohara, G.C. Benson and J.-P.E. Grolier, J. Chem. Thermodynamics, 9 (1977) 315.
- 14 D. Bares, M. Soulie and J.V. Metzger, J. Chim. Phys., 70 (1973) 1531.
- 15 K.N. Marsh, Int. Data Ser., Sel. Data Mixtures, Ser. A, 1 (1973) 2.
- 16 H.V. Kehiaian, Pure Appl. Chem., 57 (1985) 15.
- 17 M.D.C. Baluja Santos, Acta Cient. Compostelana, 7 (1970) 3.
- 18 H.V. Kehiaian, in H.A. Skinner (Ed.), Thermochemistry and Thermodynamics, MTP Int. Review of Science, Vol. 10, Butterworths, London, 1972.
- 19 T.G. Bissel, G.E. Okafor and A.G. Williamson, J. Chem. Thermodynamics, 3 (1971) 393.
- 20 H.V. Kehiaian, K. Sosnkowska-Kehiaian and R. Hryniewicz, J. Chim. Phys., 78 (1971) 922.
- 21 E.A. Guggenheim, Mixtures, Clarendon, Oxford, 1952.
- 22 A. Gero, J. Org. Chem., 19 (1954) 1960.
- 23 F. Klages, Trat. Quim. Organ., Barcelona, 468 (1960).
- 24 A. Heinz and R.N. Lichtenthaler, Ber. Bunsenges. Phys. Chem., 81 (1977) 921.